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An optimal confidence region is proposed for obtaining the largest and the smallest
means of a multivariate normal distribution with a common unknown variance and a
non-negative correlation coefficient. The confidence region is compared to a class of
asymmetric confidence regions, and the results show that it is uniformly better. Further,
a design-oriented two-stage confidence region with a fixed width is also given. Finally,
the optimal confidence region is applied to an experiment to measure the treatment
effectiveness of a physical therapy with four independent groups and the result reveals
that the proposed confidence region can provide some useful information.

Keywords Confidence region; Fixed-width; Largest (smallest) mean; Least favorable
configuration; Student t
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1. Introduction

The topic of interval estimation for the largest mean of several independent normal popula-
tions under certain random variable has been studied by many researchers in the past. When
the common population variance is known, Saxena and Tong (1969) and Dudewicz (1972)
analyzed symmetric and asymmetric confidence intervals that were not optimal. Later on,
the optimal problem was solved by Dudewicz and Tong (1971) in their work on optimal
confidence interval for the largest mean and then Tong (1973) provided percentage points
for it. When the common population variance is unknown, Chen and Dudewicz (1973) pro-
posed a class of confidence intervals for the largest normal mean. Saxena (1976) proposed
a confidence interval for the largest mean based on a large sample approximation. Chen
and Chen (1999) proposed a nearly optimal confidence interval which improves the one by
Chen and Dudewicz (1973) for the largest mean. No optimal solution was found until a re-
cent breakthrough by Chen and Chen (2004) who developed an optimal confidence interval
for the largest normal mean under homoscedasticity to conclude a longtime investigation
in this area. In situations where the population variances are unequal and unequal, Chen
and Wen (2006) proposed an optimal confidence interval for the largest normal mean. For
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several correlated normal populations or equivalently a multivariate normal distribution of
a random vector, with a common non-negative correlation coefficient, Chen et al. (2008)
proposed an optimal confidence interval for the largest population mean and it was applied
to U.S. stock mutual fund evaluation. To extend the aforementioned inference to a more
general case, Chen and Wu (2011) proposed a confidence region for the largest and small-
est population means of several independent normal populations under heteroscedasticity.
Based on the result of Chen et al. (2008), we propose, in this paper, an optimal confidence
region for the largest and the smallest means from a multivariate normal distribution, or
equivalently, of several correlated normal populations. By ”optimal” we mean that the
individual interval width in the component of the confidence region is the shortest one
at some LFC among the class of confidence regions obtained by Bonferroni inequality.
More specifically, the optimal confidence region is obtained by the following steps: For
an individual interval on the largest population mean with a fixed expected interval width,
one first attains a least favorable configuration (LFC) of the means such that the infimum
of the coverage probability of the interval for the largest population mean and the smallest
one, respectively, over the set of all possible values of means and variance is achieved, and
then locates the optimal choice of the critical values so that the maximum of the infimum
of the coverage probability attains a preassigned probability level. Finally, the Bonferroni
inequality is employed to obtain the confidence region for the largest and smallest pop-
ulations means. Each individual interval component in the proposed confidence region is
asymmetric about its best mean due to the fact that the largest sample mean overestimates
the largest population mean and the bias increases as the number of populations increases
as argued by Dudewicz (1972). Therefore, in the confidence region, it is necessary to shift
more of the individual interval for the largest (smallest) population mean to the left (right)
of the largest (smallest) sample mean. By taking a negative sign of all observations, the
largest population mean becomes the smallest one, and consequently, the smallest sample
mean turns out to underestimate the smallest population mean. Owing to such symme-
try the calculation of the confidence region becomes feasible. In real world problems, a
confidence region for both the largest and the smallest population means can tell how
good and how bad about the selected best and the worst ones are in ranking and selection
problems. In Section 2 we provide the technical part of an optimal confidence region for
the largest and smallest population means under a multivariate a normal population with
a common non-negative correlation coefficient. An algorithm to obtain the critical values
for the confidence region is given and tables of needed critical values are calculated. In
addition, if an experimenter specifies a desired fixed width for each individual interval in
the confidence region, a design-oriented two-stage asymmetric confidence region for the
largest and the smallest population means under correlated case is proposed in Section 3,
and thereafter the needed sample size can be determined. In Section 4, the proposed optimal
confidence region is compared to a class of nonsymmetric confidence regions formulated
by intercepting a lower and an upper interval; we can show that the proposed optimal
confidence region is uniformly better (in the sense of a shorter interval width) than the one
by intercepting two one-sided confidence intervals. In Section 5, this method is applied to
treatment effectiveness of a physical therapy among four independent groups and the result
reveals that the proposed confidence region can provide some useful information on real
world problems. At last, in Section 6, a summary and conclusion is made to conclude the
findings of this research. It is recommended that the joint confidence region for the largest
and the smallest population means be employed in real world problems whenever the best
and the worst scenarios are simultaneously interested.
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2. An Optimal Confidence Region for the Largest and Smallest Means

Let {(X1l , ..., Xkl), l = 1, ..., n} be a random vector sample of size n drawn from a k-variate
normal distribution with a mean vector of μ = (μ1, ..., μk), a common unknown variance
of σ 2 and a non-negative correlation coefficient of ρ. Let (X̄1, . . . , X̄k) be the sample mean
vector and Cov = {sij , i, j = 1, . . . , k} the sample covariance matrix based on the random
vector sample of size n. Then, the well-known unbiased variance estimate of σ 2 is defined
by

S2 = {1 + (k − 2)ρ} ∑k
i=1 sii − 2ρ

∑
i>j sij

k(1 − ρ){1 + (k − 1)ρ} (1)

with ν = k(n − 1) degrees of freedom (d.f.), independent of X̄i’s (see Johnson and Kotz,
1972; Johnson and Wichern, 2002). Let X̄[1] ≤ X̄[2] ≤ ... ≤ X̄[k] and μ[1] ≤ μ[2] ≤ ... ≤
μ[k] be, respectively, the ordered sample means and ordered population means in the
mean vectors where the X̄[i]’s are known sample mean values while μ[i]’s are unknown
ordered population means. For a prespecified probability P ∗(1/k2 < P ∗ < 1), consider a
confidence region for the largest mean μ[k] and the smallest mean μ[1] simultaneously by

I = {μ[k] ∈ I1 and μ[1] ∈ I2}, (2)

where I1 = (X̄[k] − d1S/
√

n, X̄[k] + d2S/
√

n) is a confidence interval for μ[k] and I2 =
(X̄[1] − d3S/

√
n, X̄[1] + d4S/

√
n) is a confidence interval for μ[1], and d1, d2, d3 and d4 are

critical values, such that the coverage probability of the largest mean μ[k] being included in
the interval I1 and the smallest mean μ[1] being included in the interval I2 is at least P ∗. To
be more specific, the coverage probability of the confidence region for μ[k] in I1 and μ[1]

in I2 can be expressed by

P (μ[k] ∈ I1, μ[1] ∈ I2)

= P (X̄[k] − d1S/
√

n < μ[k] < X̄[k] + d2S/
√

n, X̄[1] − d3S/
√

n < μ[1] < X̄[1] + d4S/
√

n)

≥ P (X̄[k] − d1S/
√

n < μ[k] < X̄[k] + d2S/
√

n)

+ P (X̄[1] − d3S/
√

n < μ[1] < X̄[1] + d4S/
√

n) − 1, (3)

where the above probability lower bound (3) is obtained by use of Bonferroni inequality.
Let Yil = −Xil , then the random vector (Y1l , ..., Ykl) has a k-variate normal population
with a unknown mean of −μi , a common unknown variance of σ 2, and the same non-
negative correlation coefficient ρ, where the random vector (Y1l , ..., Ykl) also represents the
lth observation in the random sample of size n, l = 1, ..., n. After the transformation, let
Ȳi = −X̄i , Ȳi is associated with a mean of −μi and Ȳ[k] = −X̄[1] is associated with the
largest mean μ̃[k] = −μ[1]. Then, the above probability lower bound (3) of the confidence
region (2) can be rewritten as

P (X̄[k] − d1S/
√

n < μ[k] < X̄[k] + d2S/
√

n) + P (Ȳ[k] − d4S/
√

n < μ̃[k] < Ȳ[k] + d3S/
√

n) − 1. (4)

The two probability statements in (4) are actually the individual probability coverage for the
largest and the smallest population means, respectively. One may assign different coverage
probabilities to the individual intervals I1 and I2, respectively; but, it is reasonable to assign
equal coverage probability to each of the two individual intervals due to symmetry of
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a marginal normal distribution with a common variance. Under such consideration, the
optimal choice of the constants d3 and d4 in the coverage probability for the smallest mean
P(μ[1] ∈ I2) will be equivalent to those of d1 and d2 in the coverage probability for the
largest mean P(μ[k] ∈ I1), i.e., d4 = d1 and d3 = d2. Without loss of generality, one may
write the joint coverage probability in (3) as

P (μ[k] ∈ I1, μ[1] ∈ I2)

≥ 2P (X̄[k] − d1S/
√

n < μ[k] < X̄[k] + d2S/
√

n) − 1.

= 2βδ(d1, d2) − 1, (5)

where βδ(d1, d2) = P (X̄[k] − d1S/
√

n < μ[k] < X̄[k] + d2S/
√

n) is a function of δ, and
δ = (δ1, ..., δk) with δi = √

n(μ[k] − μi)/σ ≥ 0, i = 1, ..., k. Observe in (5) that

βδ(d1, d2)

= P (X̄[k] − d1S/
√

n < μ[k] < X̄[k] + d2S/
√

n)

= P (X̄i ≤ μ[k] + d1S/
√

n, i = 1, . . . , k) − P (X̄i ≤ μ[k] − d2S/
√

n, i = 1, . . . , k)

= P (Zi ≤ δi + d1Y, i = 1, . . . , k) − P (Zi ≤ δi − d2Y, i = 1, . . . , k), (6)

where (Zi = √
n(X̄i − μi)/σ, i = 1, . . . , k) follows a k-variate normal distribution with

a mean vector of zero, a common variance of 1 and a common non-negative correlation
coefficient of ρ denoted by Nk(0, 1, ρ), and the r.v. Y = S/σ is distributed as the root
of Chi-square divided by

√
ν with ν = k(n − 1) d.f., independent of the random vector

(Z1, ..., Zk). To further reduce the dimension of the k-variate normal distribution in (6) for
ease of calculation, let W,W1, . . . ,Wk be independent and identically distributed (i.i.d.)
r.v.’s each having a standard normal distribution with a mean of 0 and a variance of 1 such
that the component Zi can be expressed as Zi = √

1 − ρWi −√
ρW, i = 1, · · · , k. By such

transformation the lower bound of the coverage probability (5) of the confidence region for
μ[k] in I1 and μ[1] in I2 simultaneously in Expression (2) can be can be expressed as

2βδ(d1, d2) − 1

= 2
[
P (

√
1 − ρWi − √

ρW ≤ δi + d1Y, i = 1, . . . , k)

−P (
√

1 − ρWi − √
ρW ≤ δi − d2Y, i = 1, . . . , k)

]
− 1

= 2

[∫ ∞

0

∫ ∞

−∞

{
k∏

i=1

P (Wi ≤ (δi + d1y + √
ρw)/

√
1 − ρ)

−
k∏

i=1

P (Wi ≤ (δi − d2y + √
ρw)/

√
1 − ρ)

}
φ(w)gν(y)dwdy

]
− 1

= 2

[∫ ∞

0

∫ ∞

−∞

{
k∏

i=1

�((δi + d1y + √
ρw)/

√
1 − ρ)

−
k∏

i=1

�((δi − d2y + √
ρw)/

√
1 − ρ)

}
φ(w)gν(y)dwdy

]
− 1, (7)
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where �(·) and φ(·) denote the cumulative distribution function (c.d.f.) and the probability
density function (p.d.f.) of a standard normal r.v., respectively and gν(·) denotes the p.d.f.
of a

√
χ2

ν /ν r.v.. Since the r.v.’s W,W1, ...,Wk are independent of S2, the second equality
in (7) holds. Further, by definition, one of the δi’s is zero, without loss of generality, we
may assume δk = 0, i.e.,δ = (δ1, ..., δk−1, 0). For a given y and fixed arbitrary constants d1

and d2 satisfying L = d1 + d2 > 0, we wish to find a least favorable configuration (LFC)
of means, denoted by δ0, over the parameter space 
 of all possible μi’s and σ 2 satisfying

βδ0
(d1, d2) = inf



βδ(d1, d2).

Then, the probability lower bound in (5) can be expressed as

2βδ0
(d1, d2) − 1

= 2 inf



βδ(d1, d2) − 1. (8)

By applying a Theorem in Chen et al. (1993), the LFC of means in βδ(d1, d2) (8) occurs at
δj = 0 or at δj = ∞ for j = 1, . . . , k − 1 and hence the inf
 βδ(d1, d2) is obtained by

βδ0
(d1, d2) = min

1≤r≤k
{f (r; d2, L)}, (9)

where

f (r; d2, L) =
∫ ∞

0

∫ ∞

−∞

{
�r ((d1y + √

ρw)/
√

1 − ρ)

− �r ((−d2y + √
ρw)/

√
1 − ρ)

}
φ(w)gν(y)dwdy,

where d1 = L − d2. Following Theorem 2 in Chen and Chen (2004) for a fixed interval
width L = d1 + d2 > 0 and for every k ≥ 2, there exists a constant d∗

2 = d∗
2 (k, L, ν) ( and

hence d∗
1 = L − d∗

2 ) such that

βδ0
(d1, d2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (1; d2, L) =
∫ ∞

0

∫ ∞

−∞

{
�((d1y + √

ρw)/
√

1 − ρ)

− �((−d2y + √
ρw)/

√
1 − ρ)

}
φ(w)gν(y)dwdy if d2 < d∗

2 ,

f (k; d2, L) =
∫ ∞

0

∫ ∞

−∞

{
�k((d1y + √

ρw)/
√

1 − ρ)

− �k((−d2y + √
ρw)/

√
1 − ρ)

}
φ(w)gν(y)dwdy if d2 > d∗

2 ,

(10)

and the constant for (10) is d∗
2 = L/2 for k = 2 and d∗

2 < L/2 for k ≥ 3. (11)

The optimal choice of the critical values d1 and d2 can be determined by d∗
2 = d2(k, L, ν)

(hence d∗
1 = L − d∗

2 ) satisfying

�(d∗
1 , d∗

2 ) = 2 sup
d2

βδ0
(d1, d2) − 1 = P ∗, (12)

then d∗
2 is the choice of d2 which maximizes (takes supremum over d2 the infimum of

the coverage probability (12) of the confidence region (2) for μ[k] in I1 and μ[1] in I2

simultaneously. Once the confidence region (2) is so determined by (12), it is usually
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called a 100P ∗% confidence region for μ[k] and μ[1]. Therefore, if βδ0
(d∗

1 , d∗
2 ) = 0.95,

then the confidence region (2) for both μ[k] and μ[1] simultaneously has a joint confidence
�(d∗

1 , d∗
2 ) of 0.90 (= 2 × 0.95 − 1) and P ∗ = 0.90 as seen in (12). The results in Eq.

(10) and Expression (11) guarantee that a symmetric interval in the confidence region is
optimal with d∗

2 = L/2 for k = 2; and an asymmetric interval in the confidence region with
d∗

2 < L/2 is optimal for k ≥ 3, which means that the individual interval I1 in (2) should be
shifted more to the left of X̄[k] and the individual interval I2 in (2) should be shifted more
to the right of X̄[1]. This is because the largest point estimator X̄[k] overestimates μ[k] and
the smallest estimator X̄[1] underestimates μ[1] for finite sample and the bias increases as
k increases as argued by (Dudewicz (1972)). It can be seen that the coverage probability
βδ0

(d1, d2) reported in (9) and (10), is monotonically increasing in L and is bounded below
by zero and above by one. For calculating Expression (10) we used a 64-point quadrature
on each of six subintervals for normal integral and two subintervals for chi/root(df) integral
and we find by numerical calculation that for any fixed L, βδ0

(d1, d2) is increasing first in d2

and then decreasing after it reaches its maximum at d2 = d∗
2 with d∗

2 = L/2 for k = 2 and
d∗

2 < L/2 for k > 2 for any given non-negative correlation coefficient of ρ, which confirms
the theoretical result in (11).

For any given k, ρ, P ∗ and ν, the optimal choice of d∗
2 for a 100P ∗% confidence region

for the largest and the smallest normal means is calculated via the following algorithm:

(i) Choose a pair of values (L0, d2) with L0 being a low initial value of L (say L0 = 3)
and a beginning value of d2 (say L0/3).

(ii) Calculate the integrals in (10) over the grids (L0, .001), (L0, .002), . . . ,(L0, L0/2).
Find the pair (L0, d2) among the grids which gives the maximum coverage prob-
ability, say P, in (10).

(iii) (a). If P < (P ∗ + 1)/2, then replace L0 by L0 + .001 and go to step (ii).
(b). If P > (P ∗ + 1)/2 and P − (P ∗ + 1)/2 > 10−4, then replace L0 by L0 − .001
and go to step (ii).
(c). If P > (P ∗ + 1)/2 and P − (P ∗ + 1)/2 < 10−4, then stop. The solution is
found.

The critical values of d1 and d2 for P ∗ = 0.8, 0.90, 0.95, 0.975, 0.99; ρ = 0.0, 0.5; k = 3,
4, 8, 12, 15 and various degrees of freedom, ν are reported in Tables 1 and 2. For example,
let k = 4, ρ = 0.5, P ∗ = .90, and n = 10(df = 36), then the solution of d1 = 2.26 and
d2 = 1.87 can be obtained from Table 2. Therefore, a 90% confidence region for μ[4]

being included in I1 = (X̄[4] − 2.26S/
√

10, X̄[4] + 1.87S/
√

10) and μ[1] being included in
I2 = (X̄[1] − 1.87S/

√
10, X̄[1] + 2.26S/

√
10) can be so constructed. Other desired critical

values can be obtained by a Fortran software program (CONF-REGION-2012.FOR) for any
combinations of k, ρ, P ∗ and ν, available from the authors. Note that the theory discussed
in Section 2 works for independent populations of a random variable, the variance estimate
in (1) becomes the usual pooled variance estimate with correlation coefficient ρ = 0 in Eqs
(7)–(10).

3. A Two-stage Confidence Region for Correlated Normal Populations

The confidence region proposed in Section 2 is good for an arbitrary sample size and it
has a random width in each individual interval in the confidence region. If one wishes
to control the width in each individual interval under a specified confidence, one needs a
two-stage procedure. In this section a design-oriented two-stage procedure is proposed to
find a confidence region with a fixed width on each individual interval under this setting.



958 Wu and Chen

Table 1
Critical values of d1 (left) and d2 (right) for various k, P ∗, and ν at ρ=0.0

pop df P ∗ = 0.8 P ∗ = 0.9 P ∗ = 0.95 P ∗ = 0.975 P ∗ = 0.99

k ν d1 d2 d1 d2 d1 d2 d1 d2 d1 d2

3 3 2.68 2.12 3.58 2.90 4.68 3.82 6.01 4.96 8.29 6.87
3 6 2.18 1.77 2.71 2.26 3.25 2.77 3.82 3.31 4.67 4.07
3 9 2.05 1.67 2.49 2.10 2.93 2.51 3.36 2.94 3.95 3.51
3 15 1.95 1.60 2.34 1.98 2.70 2.34 3.03 2.70 3.48 3.15
3 30 1.88 1.56 2.24 1.90 2.54 2.23 2.82 2.54 3.19 2.92
3 60 1.85 1.53 2.18 1.87 2.48 2.17 2.74 2.46 3.08 2.80
3 210 1.83 1.51 2.15 1.84 2.42 2.14 2.67 2.41 2.98 2.74
4 4 2.63 1.83 3.35 2.44 4.16 3.11 5.10 3.87 6.57 5.05
4 8 2.26 1.61 2.72 2.06 3.18 2.50 3.65 2.95 4.31 3.56
4 12 2.15 1.55 2.54 1.96 2.92 2.35 3.29 2.73 3.81 3.21
4 20 2.06 1.51 2.42 1.88 2.73 2.24 3.05 2.56 3.46 2.98
4 36 2.01 1.48 2.33 1.84 2.62 2.17 2.91 2.46 3.25 2.84
4 60 1.98 1.47 2.29 1.82 2.58 2.13 2.85 2.41 3.16 2.77
4 200 1.97 1.45 2.26 1.79 2.52 2.10 2.77 2.37 3.07 2.70
8 8 2.65 1.51 3.12 1.97 3.61 2.40 4.11 2.85 4.81 3.45
8 16 2.43 1.43 2.78 1.83 3.13 2.19 3.47 2.54 3.90 2.99
8 24 2.36 1.41 2.68 1.79 2.98 2.14 3.29 2.45 3.67 2.85
8 32 2.34 1.39 2.63 1.77 2.92 2.10 3.20 2.41 3.55 2.79
8 40 2.32 1.38 2.61 1.75 2.88 2.09 3.15 2.39 3.48 2.76
8 64 2.27 1.38 2.57 1.74 2.83 2.06 3.08 2.35 3.38 2.71
8 240 2.25 1.36 2.51 1.72 2.76 2.03 2.99 2.31 3.28 2.64

12 12 2.70 1.42 3.09 1.85 3.48 2.24 3.88 2.61 4.39 3.11
12 24 2.54 1.38 2.86 1.76 3.16 2.11 3.44 2.44 3.81 2.84
12 36 2.49 1.36 2.78 1.74 3.06 2.07 3.32 2.38 3.65 2.76
12 48 2.47 1.35 2.74 1.73 3.00 2.06 3.26 2.35 3.57 2.72
12 60 2.44 1.35 2.72 1.72 2.98 2.04 3.22 2.34 3.53 2.69
12 120 2.42 1.34 2.69 1.70 2.93 2.02 3.15 2.31 3.44 2.65
12 240 2.40 1.34 2.67 1.69 2.90 2.01 3.11 2.29 3.43 2.63
15 15 2.73 1.40 3.10 1.80 3.45 2.17 3.80 2.53 4.26 2.98
15 30 2.59 1.36 2.90 1.74 3.18 2.08 3.46 2.39 3.79 2.79
15 45 2.55 1.35 2.83 1.72 3.10 2.05 3.35 2.35 3.66 2.72
15 60 2.53 1.34 2.80 1.71 3.05 2.04 3.30 2.33 3.59 2.69
15 75 2.52 1.34 2.78 1.71 3.03 2.02 3.26 2.32 3.56 2.67
15 150 2.49 1.33 2.75 1.69 2.99 2.01 3.21 2.29 3.48 2.63
15 300 2.47 1.33 2.74 1.68 2.96 2.00 3.18 2.28 3.44 2.62

For this purpose, a generalized Stein-type (Stein, 1945) two-stage sampling procedure
P2 similar to Chen and Dudewicz (1976) is developed as stated in the following steps:

P2: Take an independent initial vector sample (X1l , ..., Xkl) of size n0(≥ 2) from a k-
variate population Nk(μ, σ 2, ρ), l = 1, ..., n0. Let (X̄0

1, . . . , X̄
0
k ) be the sample mean vector

and Cov0 = {s0
ij , i, j = 1, . . . , k} the sample covariance matrix based on the initial sample
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Table 2
Critical values of d1 (left) and d2 (right) for various k, P ∗, and ν at ρ = 0.5

popu df P ∗ = 0.8 P ∗ = 0.9 P ∗ = 0.95 P ∗ = 0.975 P ∗ = 0.99

k ν d1 d2 d1 d2 d1 d2 d1 d2 d1 d2

3 3 2.57 2.18 3.44 2.98 4.52 3.91 5.81 5.07 8.01 7.02
3 6 2.11 1.81 2.64 2.30 3.18 2.81 3.75 3.35 4.58 4.12
3 9 2.00 1.70 2.42 2.14 2.86 2.55 3.30 2.97 3.88 3.55
3 15 1.91 1.63 2.28 2.02 2.66 2.36 2.99 2.72 3.46 3.16
3 30 1.83 1.59 2.20 1.92 2.50 2.25 2.80 2.55 3.18 2.92
3 60 1.82 1.55 2.14 1.89 2.44 2.19 2.72 2.47 3.04 2.82
3 210 1.79 1.54 2.10 1.87 2.39 2.16 2.64 2.43 2.97 2.74
4 4 2.46 1.90 3.15 2.52 3.94 3.20 4.84 3.97 6.24 5.18
4 8 2.13 1.67 2.60 2.11 3.06 2.55 3.53 3.00 4.20 3.60
4 12 2.04 1.60 2.44 2.00 2.84 2.38 3.22 2.75 3.73 3.24
4 20 1.97 1.55 2.33 1.92 2.67 2.26 3.00 2.58 3.41 2.99
4 36 1.93 1.52 2.26 1.87 2.57 2.19 2.86 2.48 3.23 2.84
4 60 1.90 1.51 2.22 1.85 2.53 2.15 2.80 2.43 3.13 2.78
4 200 1.88 1.49 2.20 1.82 2.47 2.12 2.73 2.39 3.05 2.71
8 8 2.41 1.56 2.88 2.01 3.37 2.45 3.88 2.89 4.57 3.50
8 16 2.23 1.48 2.62 1.86 2.98 2.23 3.33 2.57 3.79 3.01
8 24 2.18 1.45 2.54 1.82 2.87 2.16 3.18 2.47 3.58 2.87
8 32 2.15 1.44 2.51 1.79 2.81 2.13 3.11 2.43 3.48 2.81
8 40 2.14 1.43 2.49 1.78 2.78 2.11 3.07 2.40 3.41 2.77
8 64 2.12 1.42 2.45 1.76 2.74 2.08 3.00 2.37 3.33 2.72
8 240 2.09 1.41 2.41 1.74 2.68 2.05 2.93 2.32 3.23 2.65

12 12 2.43 1.47 2.85 1.88 3.27 2.26 3.67 2.64 4.20 3.13
12 24 2.32 1.41 2.67 1.79 3.00 2.13 3.32 2.45 3.71 2.85
12 36 2.28 1.40 2.62 1.76 2.92 2.09 3.22 2.39 3.56 2.77
12 48 2.27 1.39 2.59 1.75 2.88 2.07 3.17 2.36 3.50 2.73
12 60 2.26 1.38 2.58 1.74 2.86 2.06 3.13 2.35 3.46 2.70
12 120 2.24 1.37 2.55 1.72 2.81 2.04 3.07 2.32 3.38 2.66
12 240 2.21 1.37 2.53 1.72 2.80 2.03 3.04 2.30 3.35 2.63
15 15 2.45 1.44 2.86 1.83 3.23 2.20 3.60 2.55 4.08 3.01
15 30 2.36 1.39 2.71 1.76 3.02 2.10 3.32 2.41 3.69 2.79
15 45 2.33 1.38 2.66 1.74 2.96 2.06 3.23 2.37 3.57 2.73
15 60 2.32 1.37 2.64 1.73 2.92 2.05 3.20 2.34 3.53 2.69
15 75 2.31 1.37 2.63 1.72 2.91 2.04 3.17 2.33 3.49 2.68
15 150 2.30 1.36 2.59 1.72 2.87 2.02 3.13 2.30 3.42 2.64
15 300 2.29 1.35 2.58 1.71 2.86 2.01 3.09 2.30 3.39 2.62

vectors, where X̄0
i = ∑n0

l=1Xil/n0 and s0
ij = ∑n0

l=1(Xil − X̄0
i )(Xjl − X̄0

j )/(n0 − 1). From
Johnson and Kotz (1972), the unbiased estimate of σ 2 is given by

S2
0 = {1 + (k − 2)ρ} ∑k

i=1 s0
ii − 2ρ

∑
i>j s0

ij

k(1 − ρ){1 + (k − 1)ρ} . (13)
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The total sample size drawn from the k-variate normal population is defined as:

n = max{n0 + 1,

[
S2

0

c2

]
+ 1}, (14)

where the value of c in (14) is an arbitrary positive constant (c is called a design constant
to be discussed later) which is to be chosen in order to meet some probability requirement
to control the interval width on the largest mean μ[k] (and the smallest mean μ[1]), and [x]
denotes the largest integer smaller than or equal to x.

Then, take n−n0 additional vector observations (X1l , ..., Xkl), l = n0 +1, ..., n, so we
have a total of n observations for the ith component denoted by Xi1, ..., Xin0 , ..., Xin. For the
ith component of the k-variate population, choose the coefficients ai1, ..., ain0 ,ai,n0+1, ..., ain

to satisfy the following three conditions:

(i)
n∑

j=1

aij = 1, (ii) ai1 = . . . = ain0 , (iii) S2
0

n∑
j=1

a2
ij = c2.

Solving the equation (iii) subject to conditions (i) to (ii), we obtained the coefficients

ai1 = ... = ain0 = 1 − (n − n0)b

n0
= a,

where b is solved by (i) to (iii) as given by

b = ai,n0+1 = ... = ain = 1

n
{1 +

√
1 − n

(n − n0)

(
1 − n0c2

S2
0

)
}.

Finally we can compute the weighted sample mean for the sample from the ith component
by

X̃i = a

n0∑
l=1

Xil + b

n∑
l=n0+1

Xil (15)

which is actually a linear combination of the two sets of samples (the initial and the
second samples ) with random coefficients a and b. Such choice has the property that if
the total sample size n is close to S2

0/c2, then a and b are close to 1/n, thus, X̃i converges
to the unbiased sample mean. Define the r.v. Ti = (X̃i − μi)/c, then it has a marginal
Student t distribution with ν0 = k(n0 − 1) d.f., i = 1, . . . , k (Chen and Wen, 2006). By the
property of Student’s t, it is also a conditional normal with a mean of 0 and a variance of
σ 2/S2

0 conditioning on S2
0 . We are going to show that the correlation coefficient between

Ti and Tj is the same as the population one, ρ, i 	= j, i = 1, .., k, j = 1, ..., k. Let σij be
the covariance of Xil and Xjl for any l = 1, 2, ..., n, i = 1, .., k, j = 1, ..., k. Then the
covariance between Ti and Tj in (13) is given by

Cov(Ti, Tj ) = E
(
TiTj

) − E(Ti)E(Tj ) = EE
(
TiTj |S0

) − EE (Ti |S0) EE
(
Tj |S0

)
= EE

(
TiTj |S0

)

= EE

⎛
⎝

⎛
⎝a

n0∑
l=1

(Xil − μi)/c + b

n∑
l=n0+1

(Xil − μi)/c

⎞
⎠
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×
⎛
⎝a

n0∑
l=1

(Xjl − μj )/c + b

n∑
l=n0+1

(Xjl − μj )/c

⎞
⎠ |S0

⎞
⎠

= E
(
n0a

2 + (n − n0)b2
)
σij /c

2

= E

(
n0a

2 + (1 − n0a)2

(n − n0)

)
σij /c

2, (16)

the second equality holds as EE(Ti |S0) = 0, i = 1, ..., k. It is also clear that the conditional
variance of Ti is σ 2/S2

0 given S2
0 , where σ 2 = σii is the variance of Xil , l = 1, ..., n.

Replacing Tj by Ti in the covariance structure (16), we obtain the variance of Ti as

V ar(Ti) = E(n0a
2 + (1−n0a)2

(n−n0) )σ 2/c2, i = 1, ..., k. Furthermore, the correlation coefficient

between Ti and Tj can be calculated by Cov(Ti, Tj )/V ar(Ti) = σij /σ
2 = ρ which is the

original population correlation coefficient as assumed in the beginning of Section 2. It is
also clear that the conditional distribution of T1, ..., Tk has a conditional k-variate normal
distribution with means of zero, variance of σ 2/S2

0 and a correlation coefficient of ρ,
which is a k-variate Student t distribution by definition. Therefore, we can claim that the
r.v.’s Ti = (X̃i − μi)/c, i = 1, . . . , k, have a k-variate central Student t distribution with
ν0 = k(n0 − 1) d.f. and a common correlation coefficient of ρ, denoted by Tk(0, ν0, ρ).
The condition (i) is to ensure the unbiasedness of X̃i for μi , the condition (ii) guarantees
that the sample mean X̄i0 and pooled sample variance S2

0 in (13) based on the first stage
n0 observations are independent, and the condition (iii) is the variance estimate of X̃i

controlled at a fixed width-related value c which makes the choices of aij possible and
guarantees that the r.v.’s {T1, ..., Tk} have a k-variate central t distribution as Tk(0, ν0, ρ).

Let X̃[k] denote the largest value of the sample means X̃i’s and μ[k] the largest unknown
population mean among μi’s. It is intuitive that the X̃[k] (X̃[1]) is a natural estimator of μ[k]

(μ[1]) and furthermore, X̃[k] (X̃[1]) is strongly consistent and asymptotically unbiased for μ[k]

(μ[1]) by a argument due to Chen (1975). Since X̃[k] overestimates μ[k] ( X̃[1] underestimates
μ[1]) for finite samples as argued by Dudewicz (1972), an asymmetric interval for the largest
mean μ[k] (smallest μ[1]) by allocating more of the interval to the left of X̃[k] (to the right of
X̃[1]) should be a better allocation. For a prespecified number P ∗(1/k2 < P ∗ < 1), consider
the confidence region for the largest mean μ[k] and the smallest mean μ[1] simultaneously
by

I ∗ = {μ[k] ∈ I ∗
1 andμ[1] ∈ I ∗

2 }, (17)

where I ∗
1 = (X̃[k] − d̃1c, X̃[k] + d̃2c) and I ∗

2 = (X̃[1] − d̃2c, X̃[1] + d̃1c), each with a fixed
width W, W = (d̃1 + d̃2)c, where d̃1 and d̃2 are constants such that d̃1 > d̃2 and d̃1 + d̃2 > 0,
and I ∗

1 (I ∗
2 ) represents the first (second) interval for μ[k] (μ[1]). The reason we use the same

d̃1 and d̃2 in both individual intervals is that the individual intervals in (17) are symmetric.
From Section 2, it can be observed that the random vector {Z1/Y, ..., Zk/Y } has a

k-variate multivariate t distribution as Tk(0, ν, ρ), where Zi = (X̄i − μi)/σ and Y = S/σ ,
i = 1, ..., k. Therefore, the optimal critical values of d̃1 and d̃2 are equal to those of d1 and
d2 by replacing the df, ν by ν0 which are determined by the algorithm as given in Section
2.

For example, let k = 8, n0 = 9, ν0 = k(n0 −1) = 64, ρ=0.5, P ∗ = 0.90, and the width
is specified to be W = 2, using Table 2, the critical values can be found as d̃1 = 2.45
and d̃2 = 1.76. Then the design constant c = W/(d̃1 + d̃2) = 2/(2.45 + 1.76) = 0.4751.
Substituting the values of n0, c, and S2

0 into (14), one can determine the required total
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sample size n to be drawn from the k-variate normal population. For independent normal
populations (with ρ = 0), one can find the critical values from Table 1.

4. Comparisons to Other Confidence Regions

In this section we first propose a class of confidence regions for the largest and the smallest
means under the setting of a k-variate normal distribution as stated in Section 2. Then,
Bonferroni inequality is employed to generate the lower bound of the coverage probability
for the confidence region in the class. After a best confidence region is determined, it
is compared to the optimal one derived in Section 2. It has been found by numerical
comparison that the optimal one proposed in Section 2 is superior to the class of confidence
regions formulated by intercepting a lower and an upper confidence interval similar to that
of Chen and Dudewicz (1976). Let’s consider a class of confidence regions J for μ[k] and
μ[1] as given by

J = (X̄[k] − c1S/
√

n < μ[k] < X̄[k] + c2S/
√

n, X̄[1] − c2S/
√

n < μ[1] < X̄[1] + c1S/
√

n), (18)

where c1 + c2 = L and L is fixed such that the confidence probability for (18) satisfies a
prespecified value. Using the Bonferroni inequality and a similar argument as in (3)-(4) we
have

P (J ) > 2P (X̄[k] − c1S/
√

n < μ[k] < X̄[k] + c2S/
√

n) − 1. (19)

The probability statement of the interval for μ[k]

P (X̄[k] − c1S/
√

n < μ[k] < X̄[k] + c2S/
√

n)

is obtained by intercepting a lower interval LI = (X̄[k]−c1S/
√

n,∞) and an upper interval
UI = (−∞, X̄[k] + c2S/

√
n) for the largest mean μ[k]. Set the right hand side of (19) to

P ∗ to obtain

P (X̄[k] − c1S/
√

n < μ[k] < X̄[k] + c2S/
√

n) = (P ∗ + 1)/2. (20)

By applying Bonferroni inequality on the left side of Equation (20) we have the lower
bound for the probability coverage of the lower interval LI for μ[k],

Fk,ν(c1, · · · , c1) =
∫ ∞

0

∫ ∞

−∞
�k((c1y + √

ρw)/
√

1 − ρ)φ(w)gν(y)dwdy, (21)

and the lower bound for the probability coverage of the upper interval UI for μ[k],

Fν(c2) =
∫ ∞

0
�(c2y)gν(y)dy. (22)

(It should be noted that the lower bound of the probability coverage for the lower interval
LI for μ[k] is a multivariate t c.d.f. while the upper interval is a univariate Student’s t c.d.f..)
There are many possible choices of c1 and c2 that can satisfy the requirement of Equation
(20). Set Equation (21) to γ and Equation (22) to (3 + P ∗)/2 − γ , the best choice can be
made by choosing the critical values as c1 = F−1

k,ν (γ1) and c2 = F−1
ν ((3 +P ∗)/2 −γ1) such
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that the γ1 minimizes the interval width function, c1 + c2, or equivalently, minimizing the
function

h(γ ) = F−1
k,ν (γ ) + F−1

ν ((3 + P ∗)/2 − γ ) (23)

for γ ∈ ((P ∗ +1)/2, 1), where F−1
k,ν (γ ) is the inverse of the c.d.f. of a k-variate t distribution

Fk,ν(·) with ν df and a nonnegative correlation coefficient of ρ, and F−1
ν (·) is the inverse of

the c.d.f. of a Student t distribution Fν(·) with ν = k(n−1) d.f.. For given L = c1 +c2 > 0,
the function in (23) is decreasing first and then increasing after it reaches a minimum
point at certain value of c2, so a unique solution exists. Define the interval width reduction
(IWR) by the proposed optimal confidence region (2) over the intercepting intervals (18)
similar to that of Chen and Chen (2004) as IWR = ((c1 + c2) − (d1 + d2))/(c1 + c2).
The improvement of IWR is calculated for ρ = 0.5 which is reported in Table 3 for joint
confidence P ∗ = 0.80, 0.90, 0.95, 0.975 and 0.99; k = 3, 4, 8, 12, 15; and various degrees
of freedom, ν.

A large and positive ratio indicates that the amount of improvement in IWR in each
component of the confidence region is significant. We can see from Table 3 that the
IWR of the optimal confidence region (2) over the confidence region J in (18) is be-
tween 4.9% at k = 3, ν = 210, P ∗ = 0.99 and 15.5% at k = 3, ν = 3, P ∗ = 0.80. For
given k and ν, the IWR decreases as P ∗ increases; for example, when k=3 and ν = 3,
the IWR ranges from 15.5% at P ∗ = 0.80 to 12.7% at P ∗ = 0.99. Secondly, the IWR

increases as k increases for given P ∗ and ν; for example, when P ∗ = 0.8 and ν = 60,
the IWR ranges from 10.7% at k = 3 increased to 14.2% at k = 15. Finally, the IWR

decreases as ν increases for given k and P ∗; for example, for k = 3 and P ∗ = 0.95, the
IWR ranges from 13.4% at ν = 3 reduced to 6.9% at ν = 210. A general pattern of the
IWR is similar to Table 3 for any nonnegative correlation coefficient and any combina-
tions of k, P ∗ and ν. Therefore, the proposed optimal confidence region (2) is uniformly
better than the intercepting one (18) for all values of ρ(≥ 0), k, P ∗, and ν calculated in
Table 3.

5. An Example

To illustrate the confidence region in (2) for independent normal distributions (where ρ

is zero), we employed the experimental results of four independent groups of physical
therapy patients by different treatments, each produced six independent scores by six
patients (Daniel, 1974, p. 195.). The scores measuring treatment effectiveness are given
in Table 4 and a summary of statistics based on six observations for each treatment is
reported in Table 5. The assumption of normality of the data for each of four independent
groups was checked by Shapiro-Wilk test using SAS program and they all yielded a high
p-value which supported this assumption. In addition, the modified Levene test (BF option
in SAS) yielded an F value of 1.43 with a p-value of 0.2645 which leads to acceptance of
the hypothesis of homogeneity of population variances.

Moreover, the traditional ANOVA test with an F value of 6.03 and a p-value of 0.0043
indicated a significant difference among four mean treatment effectiveness. We now can
apply the confidence region in (2) for the largest and the smallest treatment effectiveness out
of four k = 4 independent treatments simultaneously with df = 20 and P ∗ = 0.90. The
largest sample mean X̄[4] = 87.5, the smallest sample mean X̄[1] = 69.16667, the pooled
sample standard deviation Sp = 7.6043 and the critical value of d1=2.42 and d2=1.88
were obtained (where d1 and d2 are selected from Table 1), and then, a 90% confidence
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Table 3
Interval width reduction (IWR) by the optimal confidence region over the region (18) for

ρ = 0.5 and various P ∗

k ν P ∗ = 0.80 P ∗ = 0.90 P ∗ = 0.95 P ∗ = 0.975 P ∗ = 0.99

3 3 0.155 0.142 0.134 0.130 0.127
3 6 0.129 0.110 0.099 0.092 0.086
3 9 0.120 0.101 0.089 0.080 0.073
3 15 0.113 0.093 0.080 0.072 0.062
3 30 0.110 0.088 0.075 0.065 0.055
3 60 0.107 0.086 0.072 0.061 0.053
3 210 0.106 0.084 0.069 0.060 0.049
4 4 0.162 0.144 0.133 0.126 0.121
4 8 0.139 0.116 0.103 0.094 0.086
4 12 0.132 0.110 0.093 0.084 0.074
4 20 0.126 0.103 0.087 0.076 0.066
4 36 0.121 0.099 0.082 0.072 0.060
4 60 0.120 0.097 0.079 0.069 0.058
4 200 0.118 0.093 0.078 0.066 0.053
8 8 0.160 0.137 0.130 0.108 0.098
8 16 0.148 0.121 0.102 0.090 0.078
8 24 0.144 0.115 0.096 0.085 0.072
8 32 0.142 0.112 0.094 0.080 0.068
8 40 0.140 0.109 0.092 0.079 0.067
8 64 0.137 0.109 0.089 0.076 0.064
8 240 0.135 0.105 0.086 0.074 0.062

12 12 0.157 0.130 0.111 0.098 0.088
12 24 0.147 0.119 0.100 0.086 0.074
12 36 0.143 0.114 0.096 0.081 0.070
12 48 0.140 0.112 0.094 0.079 0.068
12 60 0.140 0.110 0.092 0.078 0.066
12 120 0.138 0.108 0.090 0.077 0.064
12 240 0.138 0.106 0.086 0.075 0.061
15 15 0.155 0.125 0.108 0.099 0.082
15 30 0.147 0.117 0.098 0.084 0.072
15 45 0.144 0.114 0.095 0.080 0.069
15 60 0.142 0.112 0.094 0.078 0.066
15 75 0.140 0.111 0.091 0.077 0.064
15 150 0.139 0.109 0.090 0.076 0.063
15 300 0.138 0.108 0.088 0.074 0.062

region for the largest mean treatment effectiveness (μ[4]) and the smallest mean treatment
effectiveness (μ[1]) is calculated as:

I1 = (87.5000 − 2.42 × 7.6043/
√

6, 87.5000 + 1.88 × 7.6043/
√

6)

= (87.5000 − 7.5128, 87.5000 + 5.8364) = (79.9872, 93.3364)
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Table 4
Scores for physical therapy patients with four treatments

Treatments

Obs 1 2 3 4

1 64 76 58 95
2 88 70 74 90
3 72 90 66 80
4 80 80 60 87
5 79 75 82 88
6 71 82 75 85

and

I2 = (69.16667 − 1.88 × 7.6043/
√

6, 69.16667 + 2.42 × 7.6043/
√

6)

= (69.16667 − 5.8364, 69.16667 + 7.5128) = (63.3303, 76.6795).

The interpretation of the confidence region is explained as follows: By ranking these
sample means, the fourth treatment is identified to be the most effective physical therapy
and the third treatment is the least effective physical therapy. To be more informative and
accurate, with a 90% confidence, the largest mean treatment effectiveness score falls in
the individual interval ranging from 79.9872 to 93.3364 in the confidence region and the
smallest mean treatment effectiveness score falls in the individual interval ranging from

Table 5
Summary of statistics

Treatments

1 2 3 4

Sample size 6 6 6 6
Sample mean 75.6667 78.8333 69.1667 87.5000
Standard dev 8.4063 6.8823 9.3897 5.0100
p-value by
Shapiro-Wilk 0.9332 0.9097 0.653 0.9843
normality test

Error mean square = 57.825 , Sp =7.6043
Modified Levene’s test for equal variances
F = 1.43 with p-value = 0.2645
Smallest, largest sample mean = 69.1667, 87.5
k = 4, df = v = 20, P ∗ = 0.90
Critical values: d1 = 2.42, d2 = 1.88
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63.3303 to 76.6795. It is clear that the two individual intervals do not have any overlap,
which indicates that the best and the worst treatments are significantly separated apart.

6. Summary and Conclusion

In ranking and selection procedures (see e.g. Bechhofer, 1954), the goal is often to select
the best population among several ones, where the best population is defined to be the one
having the largest mean. Sometimes, the experimenters want to select the best population
and the worst population at the same time and to tell how good the best one and how
bad the worse one are. That is the reason why we propose the confidence region in (2)
for the largest and the smallest normal means by maximizing the coverage probability of
the confidence region, or equivalently by minimizing the expected width of the individual
interval associated with an optimal allocation of the critical values at a given confidence
probability.

It is common to use the largest sample mean as a point estimate of the largest pop-
ulation mean since the largest sample mean is both asymptotically unbiased and strongly
consistent (see e.g. Chen, 1975). Similarly, the smallest sample mean is used as the point
estimate of the smallest population mean and it is also asymptotically unbiased and strongly
consistent. However, the largest sample mean overestimates the largest population mean
as the number of populations increases (Dudewicz, 1972). Likewise, the smallest sample
mean underestimates the smallest population mean as the number of populations increases.
Hence, it is necessary to make an adjustment for the allocation of each individual intervals
in the confidence region centered about the largest sample mean and the smallest sample
mean at the same time. It has been found that when there are only two populations, the
individual interval is symmetric about the largest (smallest) sample mean, and when there
are three or more populations, the optimal individual interval in the confidence region
becomes asymmetric by shifting more of its interval to the left of the largest sample mean
and shifting more of its interval to the right of the smallest sample mean. Such a confidence
region so constructed is thought to be optimal in the sense of a smallest interval width in
each component among a class of confidence regions obtained by Bonferroni inequality.

Our numerical calculations have shown that the proposed optimal confidence region
for the correlated normal populations is superior to currently existing one-sample procedure
for any sample size, which yields a confidence region for the largest normal mean and the
smallest normal mean simultaneously.

We also proposed a two-stage optimal confidence region in (17) for correlated normal
populations to control the width of each individual interval in the confidence region. If a
fixed confidence width is required or preassigned, a design-oriented two-stage confidence
region should be employed.

Selected tables of critical values at various confidence probabilities P ∗, nonnegative
correlation coefficient, the number of populations and degrees of freedom can be found in
Chen et al. (2008) at the level of (P ∗ + 1)/2. Extended tables of the critical values for a
large number of populations are only available through the authors using a Fortran code. It
should be noted that the optimal confidence region in (2) is based on equal sample size for
all samples. In situations where the sample sizes are not all equal, it is suggested that the
number 1/n in the region (2) be replaced by the average of 1/ni , or equivalently, by the
harmonic mean of individual sample sizes. At last, we give one example to illustrate the
confidence region for independent normal populations.

In conclusion, if practitioners wish to find a single-sample confidence region for the
largest and smallest normal means simultaneously, the optimal confidence region (2) is
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recommended to use. Further, if an interval width is desired to be controlled, a design-
oriented two-stage confidence region (17) should be considered.
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